Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Biosci (Landmark Ed) ; 29(3): 109, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38538266

RESUMEN

BACKGROUND: Severe neurological condition like Alzheimer's disease (AD) has a significantly negative impact on families and society, wherein there is no proven cure. As one of the principal active constituents of Achyranthes bidentata Blume, ecdysterone (ECR) has demonstrated antioxidant and cognitive dysfunction improvement effects. Nonetheless, the mechanism underlying the improvement of cognitive dysfunction by ECR remains unclear. This study sought to ascertain whether ECR may allebviate cognitive impairment by reducing oxidative stress via activation of the nuclear factor erythroid-2-related factor-2 (Nrf2) antioxidant system through Akt/GSK3ß pathway. METHODS: In terms of the experimental procedure, we determined the neuroprotective benefits of ECR in vivo via a cognitive impairment model of senescence-accelerated mouse prone 8 (SAMP8), we performed procedures such as behavioral testing, biochemical assaying, Nissl and TUNEL stainings, as well as flow cytometry, immunohistochemistry and western blotting. Furthermore, we investigated the underlying mechanistic action of ECR by activating PC12 cells with ß-amyloid peptide fragment 25-35 (Aß25-35). RESULTS: In vivo studies showed that ECR effectively improved cognitive impairment in SAMP8 via enhancement of learning and memory capabilities, but decreased oxidative stress, apoptosis and neuronal damage in the hippocampus. During the in vitro study, we observed that ECR dose-dependently reduced the oxidative stress and apoptosis that were induced in PC12 cells by Aß25-35. Additionally, the use of Akt inhibitors further established the potential of ECR to control Nrf2 through activation of the Akt/GSK3ß pathway and protect the PC12 cells from Aß25-35 induced damage. CONCLUSIONS: These findings offer proof that ECR reduces cognitive impairment by triggering the Nrf2 antioxidant system via the Akt/GSK3ß pathway and offer fresh information on ECR's potential as a promising therapeutic development candidate for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Fármacos Neuroprotectores , Humanos , Ratas , Ratones , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Antioxidantes/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ecdisterona/farmacología , Ecdisterona/uso terapéutico , Estrés Oxidativo , Transducción de Señal , Péptidos beta-Amiloides/toxicidad , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Disfunción Cognitiva/tratamiento farmacológico , Cognición , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
2.
Curr Mol Pharmacol ; 17: e18761429282063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389418

RESUMEN

BACKGROUND: Nicosulfuron, a widely used herbicide in crops, has raised concerns due to its escalating presence as an environmental pollutant, particularly in soil and water. The potential adverse effects of nicosulfuron on animals, including reproductive toxicity, have garnered attention. OBJECTIVE: The study aimed to evaluate the reproductive toxicity of nicosulfuron in male mice. METHODS: Male mice were orally administrated with three different concentration gradients (350, 700, and 1400 mg/kg) of nicosulfuron for 35 days. The investigation delved into sperm quality, testicular structures, and expression of cleaved caspase-3 and NF-κB p65 of the testes. RESULTS: The finding unveiled a correlation between nicosulfuron exposure and detrimental effects on sperm quality and alteration of testicular structure. Notably, parameters, such as sperm survival rate (SUR) and sperm motility (MOT), exhibited a decline in relation to increasing nicosulfuron dosages. Moreover, in the mice subjected to higher doses of nicosulfuron, elevated expression of cleaved caspase-3 and NF-κB p65 was observed in the testes. Interestingly, we also observed an increase of NF-κB p65 expression in the mice exposed to the nicosulfuron. CONCLUSION: Our research revealed that exposure to nicosulfuron resulted in compromised sperm quality and alterations in testicular structure. The correlation between nicosulfuron and apoptosis, especially via the NF-κB pathway, provided significant insights into the mechanisms underpinning these detrimental effects. These findings significantly enhance our comprehension of the potential hazards associated with nicosulfuron exposure and its impacts on the reproductive health of animals.


Asunto(s)
FN-kappa B , Piridinas , Compuestos de Sulfonilurea , Testículo , Masculino , Ratones , Animales , FN-kappa B/metabolismo , Caspasa 3/metabolismo , Caspasa 3/farmacología , Estrés Oxidativo , Motilidad Espermática , Semen/metabolismo , Espermatozoides/metabolismo , Transducción de Señal , Apoptosis
3.
Recent Pat Anticancer Drug Discov ; 19(2): 199-208, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38214359

RESUMEN

BACKGROUND: As a pentacyclic triterpenoid, OA (oleanolic acid) has exhibited antiinflammatory, immunomodulatory and antitumor effects. VEGFR-2 (vascular endothelial cells receptor-2) tyrosine kinase activity could be inhibited by apatinib, a small-molecule antiangiogenic agent. OBJECTIVE: Thus, this study sought to investigate the mechanism underlying the synergistic antitumor activity of combined OA and apatinib patent. METHODS: Through CCK8 (Cell counting kit 8 assay), flow cytometric and western blotting techniques, we conducted in vitro studies on apatinib and OA effects on cell proliferation and apoptosis in H22 cell line. H22 tumor-burdened mice model was established in vivo, while the related signaling pathways were studied via pathological examination, western blotting and qPCR (quantitative polymerase chain reaction). RESULTS: Growth of H22 cells in vitro and in vivo could be inhibited effectively by apatinib and OA. Thus, OA repaired liver function and inhibited oxidative stress induced by apatinib. CONCLUSION: OA can treat apatinib induced liver injury in H22 Tumor-burdened mice by enhancing the suppresssive effect of apatinib on the growth of tumor.


Asunto(s)
Neoplasias Hepáticas , Ácido Oleanólico , Piridinas , Humanos , Animales , Ratones , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , Línea Celular Tumoral , Células Endoteliales/metabolismo , Células Endoteliales/patología , Patentes como Asunto , Proliferación Celular , Neoplasias Hepáticas/patología
4.
Biomater Sci ; 12(5): 1131-1150, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38284828

RESUMEN

Extracellular vesicles (EVs) are vesicles with lipid bilayer structures shed from the plasma membrane of cells. Microvesicles (MVs) are a subset of EVs containing proteins, lipids, nucleic acids, and other metabolites. MVs can be produced under specific cell stimulation conditions and isolated by modern separation technology. Due to their tumor homing and large volume, tumor cell-derived microvesicles (TMVs) have attracted interest recently and become excellent delivery carriers for therapeutic vaccines, imaging agents or antitumor drugs. However, preparing sufficient and high-purity TMVs and conducting clinical transformation has become a challenge in this field. In this review, the recent research achievements in the generation, isolation, characterization, modification, and application of TMVs in cancer therapy are reviewed, and the challenges facing therapeutic applications are also highlighted.


Asunto(s)
Micropartículas Derivadas de Células , Vesículas Extracelulares , Neoplasias , Humanos , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patología , Vesículas Extracelulares/química , Neoplasias/tratamiento farmacológico , Membrana Celular
5.
Front Biosci (Landmark Ed) ; 29(1): 5, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38287796

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease characterized by destruction of synovial joints, abnormal immune responses and chronic inflammatory manifestations, which seriously affects patients' well-being. We explored this study to ascertain the effect and mechanism of silent information regulator 6 (SIRT6) on RA. METHODS: Genes of RA patients and normal volunteers were analyzed using Gene Expression Omnibus (GEO), Kyoto-Encyclopedia of Genes and Genomes (KEGG) and Disconet databases. Serum samples of RA patients and normal subjects were collected before detection of myeloid differentiation factor-88 (MyD88)-extracellular signal-regulated kinase (ERK) pathway proteins expression with Western blot. In vitro RA fibroblast-like synoviocytes (FLS) cell model (RA-FLS) was established by treating RSC-364 with recombinant rat IL-1ß (10 ng/mL) after which SIRT6 and MyD88 adenoviruses treatment was carried out. The enzyme linked immunoassay (ELISA), real time polymerase chain reaction (RT-PCR) and Western blot were respectively used to measure inflammatory factors, related messenger ribonucleic acid (mRNA) and protein expressions. Also, we constructed RA rat model with bovine type II collagen (BIIC) and complete Freund's adjuvant, before treatment with SIRT6 and MyD88 adenoviruses. RESULTS: Low expression of SIRT6 gene were detected in RA patients. Also, levels of MyD88, ERK and phosphorylated extracellular signal-regulated protein kinase (p-ERK) protein expressions in RA patients were increased, whilst that of SIRT6 protein decreased. Compared to FLS cells in Control group, inflammatory factors levels of rats in Model batch increased significantly. SIRT6 adenovirus treatment potentially and significantly inhibited inflammation including suppression of increased inflammatory factors induced by MyD88. In comparison with FLS cells in Control group, Model batch cells' MyD88, interleukin (IL)-1ß, IL-21, IL-22, IL-6, IL-17, tumor necrosis factor-alpha (TNF-α) and monocyte chemo-attractant protein-1 (MCP-1) mRNA expressions increased but SIRT6 gene treatment could reduce mRNA expression of the aforesaid factors, even after MyD88 adenovirus treatment. Besides, overpressed SIRT6 negatively regulated levels of MyD88, ERK and p-ERK proteins expressions. SIRT6 demonstrated anti-RA effect by regulating MyD88-ERK pathway and inhibiting inflammatory response in RA rats. CONCLUSIONS: SIRT6 could potentially inhibit the inflammatory response of RA via a regulatory mechanism mainly relating to MyD88-ERK signal pathway. Thus, SIRT6 and its agonists may serve as new targets for developing drugs that can potentially treat RA.


Asunto(s)
Artritis Reumatoide , Sirtuinas , Humanos , Animales , Bovinos , Ratas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , Artritis Reumatoide/genética , Transducción de Señal , Inflamación/metabolismo , ARN Mensajero/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Sirtuinas/farmacología , Fibroblastos/metabolismo , Células Cultivadas
6.
Curr Gene Ther ; 24(1): 73-92, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37526181

RESUMEN

BACKGROUND: Isoliquiritin belongs to flavanol glycosides and has a strong antiinflammatory activity. This study sought to investigate the anti-inflammatory effect of isoliquiritin and its underlying mechanism. METHODS: The inflammatory (trinitro-benzene-sulfonic acid-TNBS-induced ulcerative colitis (UC)) model was established to ascertain the effect of isoliquiritin on the caspase-3/HMGB1/TLR4 pathway in rats. We also explored its protective effect on intestinal inflammation and its underlying mechanism using the LPS-induced inflammation model of Caco-2 cells. Besides, Deseq2 was used to analyze UCassociated protein levels. RESULTS: Isoliquiritin treatment significantly attenuated shortened colon length (induced by TNBS), disease activity index (DAI) score, and body weight loss in rats. A decrease in the levels of inflammatory mediators (IL-1ß, I IL-4, L-6, IL-10, PGE2, and TNF-α), coupled with malondialdehyde (MDA) and superoxide dismutase (SOD), was observed in colon tissue and serum of rats after they have received isoliquiritin. Results of techniques (like western blotting, real-time PCR, immunohistochemistry, and immunofluorescence-IF) demonstrated the potential of isoliquiritin to decrease expressions of key genes in the TLR4 downstream pathways, viz., MyD88, IRAK1, TRAF6, NF-κB, p38, and JNK at mRNA and protein levels as well as inhibit HMGB1 expression, which is the upstream ligand of TLR4. Bioinformational analysis showed enteritis to be associated with a high expression of HMGB1, TLR4, and caspase-3. CONCLUSION: Isoliquiritin could reduce intestinal inflammation and mucosal damage of TNBS-induced colitis in rats with a certain anti-UC effect. Meanwhile, isoliquiritin treatment also inhibited the expression of HMGB1, TLR4, and MyD88 in LPS-induced Caco-2 cells. These results indicated that isoliquiritin could ameliorate UC through the caspase-3/HMGB1/TLR4-dependent signaling pathway.


Asunto(s)
Chalcona/análogos & derivados , Colitis Ulcerosa , Glucósidos , Proteína HMGB1 , Humanos , Ratas , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Caspasa 3/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/farmacología , Proteína HMGB1/genética , Células CACO-2 , Lipopolisacáridos , Transducción de Señal/genética , FN-kappa B/metabolismo , Inflamación/tratamiento farmacológico , Modelos Animales de Enfermedad
7.
Biomater Adv ; 155: 213683, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925825

RESUMEN

Liver cancer is among the leading cause of cancer related death worldwide. There is growing interest in using traditional Chinese medicines such as arsenic trioxide (ATO) to treat liver cancer. ATO have attracted attention due to its wide range of anti-cancer activities. However, the current ATO formulations are associated with drawbacks such as short half-life, lack of targeting ability towards solid tumors and apparent toxic side effects. Tumor microvesicles (TMVs) has shown encouraging results for the delivery of drugs to solid tumor. In this work, we designed ATO loaded TMVs further modified by SP94 peptide as liver cancer specific ligand (ATO@SP94-TMVs). This drug delivery system utilized SP94 peptide that selectively targets liver cancer cells while TMVs increase the accumulation of ATO at tumor site and activate immune response owing to the associated antigens. ATO@SP94-TMVs exhibited high encapsulation efficiency and tumor microenvironment triggered enhanced release of ATO in vitro. Cytotoxicity and uptake studies revealed remarkable inhibition and specific targeting of H22 cells. In addition, excellent immune response was detected in vitro, enhancing anti-tumor efficacy. Furthermore, a tumor inhibition rate of about 53.23 % was observed in H22 bearing tumor model. Overall, these results confirm that ATO@SP94-TMVs can be a promising nano drug delivery system for the future liver cancer therapy and improve its clinical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Neoplasias Hepáticas , Humanos , Trióxido de Arsénico/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Péptidos/uso terapéutico , Microambiente Tumoral
8.
Biomater Sci ; 12(1): 57-91, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37902579

RESUMEN

In recent years, considerable attention has been given to phototherapy, including photothermal and photodynamic therapy to kill tumor cells by producing heat or reactive oxygen species (ROS). It has the high merits of noninvasiveness and limited drug resistance. To fully utilize this therapy, an extraordinary nanovehicle is required to target phototherapeutic agents in the tumor cells. Nanovesicles embody an ideal strategy for drug delivery applications. Cell membrane-derived biomimetic nanovesicles represent a developing type of nanocarrier. Combining this technique with cancer phototherapy could enable a novel strategy. Herein, efforts are made to describe a comprehensive overview of cell membrane-derived biomimetic nanovesicles for cancer phototherapy. The description in this review is mainly based on representative examples of exosome-derived biomimetic nanomedicine research, ranging from their comparison with traditional nanocarriers to extensive applications in cancer phototherapy. Additionally, the challenges and future prospectives for translating these for clinical application are discussed.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Biomimética , Fototerapia , Membrana Celular , Neoplasias/terapia , Nanopartículas/uso terapéutico
9.
Pharm Res ; 40(9): 2215-2228, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37700104

RESUMEN

PURPOSE: This study aims at chemotherapy and starvation therapy of HCC via starvation and apoptosis. METHODS: Hollow mesoporous organosilica nanoparticles (HMONs) with the thioether-hybrid structure were developed using an organic/inorganic co-templating assembly approach. Hydrofluoric acid was used to remove the internal MSN core for yielding large radial mesopores for loading drug cargos. The morphology and structure of NPs were determined using TEM and SEM. HMONs were stepwise surface modified with glucose oxidase (GOx), oxygen (O2) and Doxorubicin (DOX), and cancer cell membrane (CCM) for yielding CCM-coated HMONs (targeted stealth biorobots; TSBRs) for starvation, apoptotic, and enhanced cell uptake properties, respectively. The surface area and pore size distribution were determined via BET and BJH assays. The catalytic ability of GOx-modified NPs was measured using in vitro glucose conversion approach authenticated by H2O2 and pH determination assays. MTT assay was used to determine the cytotoxicities of NPs. Cell uptake and apoptotic assay were used for the NPs internalization and apoptosis mechanisms. The subcutaneous HepG2 tumor model was established in mice. The long-term in vivo toxicity was determined using blood assays. RESULTS: The prepared NPs were spherical, hollow and mesoporous with excellent surface area and pore size distribution. The GOx-modified NPs exhibited excellent catalytic activity. The TSBRs showed better cytotoxicity and reduce the tumor size and weight. The NPs showed long-term safety in vivo. CONCLUSION: TSBRs destroyed cancer cells by starvation and chemotherapy in both in-vitro and in-vivo settings which demonstrates its anti-cancer potential.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Ratones , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Dióxido de Silicio/química , Peróxido de Hidrógeno , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas/química , Doxorrubicina/química , Porosidad
11.
Biomater Sci ; 11(15): 5301-5319, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37357799

RESUMEN

Liver cancer (LC), one of the most common malignant primary tumors, presents a poor prognosis, high morbidity rate, and poor clinical outcomes. Despite conventional treatments have been applied prior to the deterioration, their clinical benefits were still limited. Arsenic trioxide (ATO), a toxic Chinese medicine, has been proven to efficiently inhibit the growth of LC both in vitro and in vivo. However, its therapeutic effects are hindered by poor pharmacokinetics and dose-limited toxicity. In this study, we developed a pH-responsive nanoplatform (PEG-MSN@ATO) consisting of mesoporous silica nanoparticles (MSN) that were modified with amino groups, loaded with ATO, and grafted with PEG to achieve the pH-triggered release and regulate CD8+ T cells and Treg cells in the tumor microenvironment (TME). PEG-MSN@ATO were characterized by uniform size, good loading efficiency, pH-responsive release features, decreased macrophage uptake, and enhanced dendritic cell activation in vitro. Furthermore, in vivo studies demonstrated that PEG-MSN@ATO enhanced the antitumor efficacy by inducing apoptosis and ROS production, inhibiting tumor cell proliferation and metastasis, and activating antitumor immunity within the TME. PEG-MSN@ATO also reduced the system toxicity of ATO by controlling the pH-trigger release in the tumor site. These results indicate that the PEG-MSN@ATO represents a promising drug delivery platform for reducing toxicity and enhancing the therapeutic efficacy of ATO against LC.


Asunto(s)
Neoplasias Hepáticas , Nanopartículas , Humanos , Trióxido de Arsénico/uso terapéutico , Dióxido de Silicio , Linfocitos T CD8-positivos , Portadores de Fármacos , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Neoplasias Hepáticas/tratamiento farmacológico , Concentración de Iones de Hidrógeno , Microambiente Tumoral
12.
Biomater Sci ; 11(4): 1373-1397, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36594554

RESUMEN

Colon mucosal inflammation attracts a plethora of immune cells with overexpressed surface receptors. Colon drug targeting can be aided by exploiting overexpressed cell surface receptors which improve drug site retention for an extended period. We developed Tofacitinib citrate (Tofa) loaded transferrin anchored PLGA nanocarriers (Tofa-P/tfr NCs) via the quality by design (QbD) approach for specific binding to the transferrin receptor (TFR-1/CD71) overexpressed on macrophages and colon epithelial cells. Nanocarriers were produced using a modified emulsion-evaporation method with a protein adsorption technique. The QbD-risk assessment method was adopted to screen the variables impacting the quality of nanocarriers, which were then optimized using the 33 Box-Behnken design of experiment (DOE). The obtained nanocarriers have the desired physicochemical properties, drug entrapment, tfr adsorption, stability, mucoadhesion, and sustained drug release pattern at pH 7.4 (colon pH). In vitro cell-based studies confirmed the cellular biocompatibility and considerable uptake of nanocarriers by colon and macrophage cells; the uptake was diminished by anti-CD71/TFR1 antibodies. Tofa-P/tfr NCs demonstrated good colon targeting potential in the dextran sulfate sodium (DSS) induced ulcerative colitis (UC) model. In vivo therapeutic efficacy against UC was established through restored morphological and histopathological scores, vascular integrity, antioxidant levels, hematological parameters, pro-inflammatory cytokine/marker levels, and microbial indices. Tofa-P/tfr NCs shut down the elevated STAT-1 and TFR-1 levels, demonstrating the enhanced efficacy of the encapsulated drug. Thus, the QbD-driven approach successfully developed Tofa-P/tfr NCs with good potential to mitigate mucosal inflammation by targeting colon and macrophage surface receptors.


Asunto(s)
Colitis Ulcerosa , Colitis , Humanos , Animales , Transferrina , Sistemas de Liberación de Medicamentos , Colitis Ulcerosa/inducido químicamente , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Macrófagos/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Modelos Animales de Enfermedad
13.
Drug Deliv Transl Res ; 13(4): 924-945, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36542259

RESUMEN

Nanotechnology has been comprehensively applied as a new approach to managing wound healing. Particularly, nanoclays are being used to improve traditional wound healing approaches or new therapies. Nanoclays are nanoscale aluminosilicates with remarkable intrinsic properties, including the capacity to promote hemostatic response, anti-inflammatory effects, angiogenesis, and re-epithelization. The main purpose of the present review is focusing on skin lesions, post-surgical wounds, burn wounds, and chronic ulcer skin wounds that can be treated using nanoclays, not only as vehicles for therapeutic molecules' efficacy improvement but also alone due to their native beneficial features. A systematic search of the PubMed, ScienceDirect, Scopus, Web of Science, and Google Scholar databases revealed several studies satisfying the purpose of our study. In addition, the selected keywords were used to refine the information. Non-planar hydrous phyllosilicates have been compared with other nanoclays considering their acute specific surface area and loading capacity are strongly influenced by their structure. Nanocomposites in the powder form may be directly incorporated in polymers to form gels, biofilms, and scaffolds that may be adjustable to wound sites. Also, nanoclays can be directly incorporated into polymer mats. Regarding hydrogels/films and mats, nanoclays can improve their mechanical strength, thermal stability, viscosity, and cohesive strength. Additionally, nanoclays are able to control drug release, as well as their skin bioavailability, and seem to be promising candidates to overcome cytotoxicity problems; further in vivo toxicity studies are required.


Asunto(s)
Nanocompuestos , Nanopartículas , Cicatrización de Heridas , Nanocompuestos/química , Nanopartículas/química
14.
Acta Biomater ; 157: 1-23, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36521673

RESUMEN

Pancreatic cancer is one of the harshest and most challenging cancers to treat, often labeled as incurable. Chemotherapy continues to be the most popular treatment yet yields a very poor prognosis. The main barriers such as inefficient drug penetration and drug resistance, have led to the development of drug carrier systems. The benefits, ease of fabrication and modification of liposomes render them as ideal future drug delivery systems. This review delves into the versatility of liposomes to achieve various mechanisms of treatment for pancreatic cancer. Not only are there benefits of loading chemotherapy drugs and targeting agents onto liposomes, as well as mRNA combined therapy, but liposomes have also been exploited for immunotherapy and can be programmed to respond to photothermal therapy. Multifunctional liposomal formulations have demonstrated significant pre-clinical success. Functionalising drug-encapsulated liposomes has resulted in triggered drug release, specific targeting, and remodeling of the tumor environment. Suppressing tumor progression has been achieved, due to their ability to more efficiently and precisely deliver chemotherapy. Currently, no multifunctional surface-modified liposomes are clinically approved for pancreatic cancer thus we aim to shed light on the trials and tribulations and progress so far, with the hope for liposomal therapy in the future and improved patient outcomes. STATEMENT OF SIGNIFICANCE: Considering that conventional treatments for pancreatic cancer are highly associated with sub-optimal performance and systemic toxicity, the development of novel therapeutic strategies holds outmost relevance for pancreatic cancer management. Liposomes are being increasingly considered as promising nanocarriers for providing not only an early diagnosis but also effective, highly specific, and safer treatment, improving overall patient outcome. This manuscript is the first in the last 10 years that revises the advances in the application of liposome-based formulations in bioimaging, chemotherapy, phototherapy, immunotherapy, combination therapies, and emergent therapies for pancreatic cancer management. Prospective insights are provided regarding several advantages resulting from the use of liposome technology in precision strategies, fostering new ideas for next-generation diagnosis and targeted therapies of pancreatic cancer.


Asunto(s)
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Liposomas , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos , Portadores de Fármacos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas
15.
Colloids Surf B Biointerfaces ; 221: 113012, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36395617

RESUMEN

The progress in new delivery systems for active ingredients has boosted the dermopharmaceutical and cosmetic fields by allowing formulations to display enhanced skin permeation capabilities. Cyclodextrins (CDs) are cyclic oligosaccharides able to form host-guest inclusion complexes with guest active molecules, resulting in improved physicochemical properties of such molecules. The incorporation of CDs in dermopharmaceutical and cosmetics formulations has received much attention since the late 1970 s by enhancing modulation of the passage through the skin and vectorization into the target site while simultaneously offering a biocompatible delivery system. This paper features the advantages of CDs in dermopharmaceutical and cosmetic applications, such as the improvement of the apparent solubility and the stability of the active ingredients, the possibility of masking unpleasant odors, among others that are be described, emphasizing that these versatile skin active ingredient carriers are strongly promising both in the treatment of skin diseases and in the improvement of cosmetic formulations.


Asunto(s)
Cosméticos , Ciclodextrinas , Piel , Solubilidad
16.
Eur J Med Chem ; 245(Pt 1): 114893, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36395649

RESUMEN

Diabetic neuropathic pain (DNP) is a common, complex, and severe complication of diabetes. It can lead to increased mortality, lower-limb amputations, and distressing neuropathic symptoms. Available therapies for DNP are broad-spectrum analgesics, related to various side effects. Transient receptor potential vanilloid-1 (TRPV1) is widely expressed within the peripheral and central nervous systems and plays an essential role in pain perception and regulation. Both TRPV1 agonists and antagonists could reduce the sensitivity to nociception. Some exhibit blood glucose homeostasis regulates function by influencing insulin secretion and receptor sensitivity. Since TRPV1 has exhibited the unique advantages of simultaneously managing blood sugar and pain, developing new TRPV1 channel modulators for diabetes-related pain syndrome is a promising alternative to conventional therapy. In this review, the role of TRPV1 in the pathogenesis of DNP has been described and challenges of TRPV1 modulators have been explored to be a new therapy for DNP.


Asunto(s)
Antineoplásicos , Diabetes Mellitus , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neuralgia , Canales de Potencial de Receptor Transitorio , Humanos , Glucemia , Neuralgia/tratamiento farmacológico , Canales Catiónicos TRPV
17.
Curr Mol Pharmacol ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-38254301

RESUMEN

OBJECTIVE: The potential mechanism underlying the protective effect of Astragaloside IV (AS-IV) co-treatment with 1, 25-dihydroxy-vitamin D (Vit-D) on neuropathy in diabetic high-fat rats was investigated. METHODS: The rat diabetic hyperlipidemia (DH) model was established via streptozotocin and a high-fat diet (HFD). After co-treatment (of AS-IV and Vit-D at respective doses of 50 mg/kg via oral gavage and 30000 IU/kg via intramuscular injection), blood glucose levels, markers of inflammation and oxidative stress, as well as apoptosis and histopathology were evaluated with appropriate techniques. RESULTS: Co-treatment could effectively reduce blood glucose levels substantially (p< 0.01), improve weight loss, and decrease oral glucose tolerance. Reduced respective sensory and motor nerve conduction velocities in rats were substantially improved (p<0.01) after co-treatment. Also, we observed obvious improvement in DH-induced injured nerve fiber myelin structure and other organ pathologies in co-treated rats. Besides, we observed up-regulated expressions of peroxisomal-proliferator activated receptor-alpha (PPAR-α) and Vit-D receptors (VDR) (p< 0.01) through the western blotting technique. Using the same technique, we also discovered reduced levels of interleukin (IL)1 beta, IL-6, and tumor necrosis factor-alpha, coupled with increased IL-10 and superoxide dismutase levels (p< 0.01). Importantly, co-treatment could effectively exert antioxidative and anti-inflammatory effects. Also, co-treatment resulted in the up-regulation of PPAR-α and VDR expressions, inhibition of the renin-angiotensin-aldosterone system, and promotion of ß-cell sensitivity to insulin. CONCLUSION: The combined application of AS-IV and Vit-D exhibited health effects such as anti-oxidation, regulation of inflammatory factors, and promotion of cell repair, which may be considered as the mechanisms underlying treatment of diabetic peripheral neuropathy and improvement in biochemical indicators.

18.
J Oncol ; 2022: 5682451, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36199795

RESUMEN

Lung cancer is the deadliest cancer killing almost 1.8 million people in 2020. The new cases are expanding alarmingly. Early lung cancer manifests itself in the form of nodules in the lungs. One of the most widely used techniques for both lung cancer early and noninvasive diagnosis is computed tomography (CT). However, the intensive workload of radiologists to read a large number of scans for nodules detection gives rise to issues like false detection and missed detection. To overcome these issues, we proposed an innovative strategy titled adaptive boosting self-normalized multiview convolution neural network (AdaBoost-SNMV-CNN) for lung cancer nodules detection across CT scans. In AdaBoost-SNMV-CNN, MV-CNN function as a baseline learner while the scaled exponential linear unit (SELU) activation function normalizes the layers by considering their neighbors' information and a special drop-out technique (α-dropout). The proposed method was trained and tested using the widely Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) and Early Lung Cancer Action Program (ELCAP) datasets. AdaBoost-SNMV-CNN achieved an accuracy of 92%, sensitivity of 93%, and specificity of 92% for lung nodules detection on the LIDC-IDRI dataset. Meanwhile, on the ELCAP dataset, the accuracy for detecting lung nodules was 99%, sensitivity 100%, and specificity 98%. AdaBoost-SNMV-CNN outperformed the majority of the model in accuracy, sensitivity, and specificity. The multiviews confer the model's good generalization and learning ability for diverse features of lung nodules, the model architecture is simple, and has a minimal computational time of around 102 minutes. We believe that AdaBoost-SNMV-CNN has good accuracy for the detection of lung nodules and anticipate its potential application in the noninvasive clinical diagnosis of lung cancer. This model can be of good assistance to the radiologist and will be of interest to researchers involved in the designing and development of advanced systems for the detection of lung nodules to accomplish the goal of noninvasive diagnosis of lung cancer.

19.
J Oncol ; 2022: 4022960, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185622

RESUMEN

Glioblastoma multiforme is a serious and life-threatening tumor of central nervous system, characterized by aggressive behavior, poor prognosis, and low survival rate. Despite of the availability of aggressive antitumor therapeutic regimen for glioblastoma (radiotherapy followed by chemotherapeutic dose), recovery rate, and patients' survival ratio is attributed to the lack of selectivity of therapeutic drugs and less advancement in cancer therapeutics over last decade. Moreover, tools employed in conventional diagnosis of glioblastoma are more invasive and painful, making the process excruciating for the patients. These challenges urge for the need of novel biomarkers for diagnosis, prognosis, and prediction purpose with less invasiveness and more patient compliance. This article will explore the genetic biomarkers isocitrate dehydrogenase mutation, MGMT mutations, and EGFR that can be deployed as an analytical tool in diagnosis of disease and prognosis of a therapeutic course. The review also highlights the importance of employing novel microRNAs as prognostic biomarkers. Recent clinical advancements to treat GBM and to prevent relapse of the disease are also discussed in this article in the hope of finding a robust and effective method to treat GBM.

20.
Pharmaceutics ; 14(9)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36145550

RESUMEN

Oesophageal cancer is a malignant tumor with high morbidity and mortality. Surgical treatment, radiotherapy, and chemotherapy are the most common treatment methods for oesophageal cancer. However, traditional chemotherapy drugs have poor targeting performance and cause serious adverse drug reactions. In this study, a GSH-sensitive material, ATRA-SS-HA, was developed and self-assembled with curcumin, a natural polyphenol antitumor drug, into nanomicelles Cur@ATRA-SS-HA. The micelles had a suitable particle size, excellent drug loading, encapsulation rate, stability, biocompatibility, and stable release behaviour. In the tumor microenvironment, GSH induced disulfide bond rupture in Cur@ATRA-SS-HA and promoted the release of curcumin, improving tumor targeting. Following GSH-induced release, the curcumin IC50 value was significantly lower than that of free curcumin and better than that of 5-FU. In vivo pharmacokinetic experiments showed that the drug-loaded nanomicelles exhibited better metabolic behaviour than free drugs, which greatly increased the blood concentration of curcumin and increased the half-life of the drug. The design of the nanomicelle provides a novel clinical treatment for oesophageal cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...